Combining Privileged Information to Improve Context-Aware Recommender Systems

نویسندگان

  • Camila Vaccari Sundermann
  • Marcos Aurélio Domingues
  • Ricardo M. Marcacini
  • Solange Oliveira Rezende
چکیده

A recommender system is an information filtering technology which can be used to predict preference ratings of items (products, services, movies, etc) and/or to output a ranking of items that are likely to be of interest to the user. Context-aware recommender systems (CARS) learn and predict the tastes and preferences of users by incorporating available contextual information in the recommendation process. One of the major challenges in context-aware recommender systems research is the lack of automatic methods to obtain contextual information for these systems. Considering this scenario, in this paper, we propose to use contextual information from topic hierarchies of the items (web pages) to improve the performance of context-aware recommender systems. The topic hierarchies are constructed by an extension of the LUPI-based Incremental Hierarchical Clustering method that considers three types of information: traditional bag-of-words (technical information), and the combination of named entities (privileged information I) with domain terms (privileged information II). We evaluated the contextual information in four context-aware recommender systems. Different weights were assigned to each type of information. The empirical results demonstrated that topic hierarchies with the combination of the two kinds of privileged information can provide better recommendations. Keywords—Contextual Information; Context-Aware Recommender Systems; Text Mining; Topic Hierarchy; Named Entities; Domain Terms

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

سیستم پیشنهاد دهنده زمینه‌آگاه برای انتخاب گوشی تلفن همراه با ترکیب روش‌های تصمیم‌گیری جبرانی و غیرجبرانی

Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1511.02290  شماره 

صفحات  -

تاریخ انتشار 2015